Quiz 9

Name
Section
Score
(7 points) Identify the surface whose equation is given as $2 r^{2}+z^{2}=1$.

Solution: Since $2 r^{2}+z^{2}=1$ and $r^{2}=x^{2}+y^{2}$, we have $2\left(x^{2}+y^{2}\right)+z^{2}=1$, an ellipsoid centered at the origin with intercepts $x= \pm \frac{1}{\sqrt{2}}, y= \pm \frac{1}{\sqrt{2}}$ and $z= \pm 1$.
(8 points) Evaluate

$$
\iiint_{B}\left(x^{2}+y^{2}+z^{2}\right) d V
$$

where B is the ball with center the origin and radius 5 .

Solution: In spherical coordinates, B is represented by $\{(\rho, \theta, \phi) \mid 0 \leq \rho \leq 5,0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi\}$. Thus

$$
\begin{aligned}
\iiint_{B}\left(x^{2}+y^{2}+z^{2}\right) d V & =\int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{5}\left(\rho^{2}\right) \rho^{2} \sin \phi d \rho d \theta d \phi \\
& =\int_{0}^{\pi} \sin \phi d \phi \times \int_{0}^{2 \pi} d \theta \times \int_{0}^{5} \rho^{4} d \rho \\
& =[-\cos \phi]_{0}^{\pi} \times[\theta]_{0}^{2 \pi} \times\left[\frac{1}{5} \rho^{5}\right]_{0}^{5} \\
& =(2)(2 \pi)(625) \\
& =2500 \pi
\end{aligned}
$$

